Toric Hilbert Schemes
نویسنده
چکیده
We introduce and study the toric Hilbert scheme that parametrizes all ideals with the same multigraded Hilbert function as a given toric ideal.
منابع مشابه
Combinatorics of the Toric Hilbert Scheme
The toric Hilbert scheme is a parameter space for all ideals with the same multi-graded Hilbert function as a given toric ideal. Unlike the classical Hilbert scheme, it is unknown whether toric Hilbert schemes are connected. We construct a graph on all the monomial ideals on the scheme, called the flip graph, and prove that the toric Hilbert scheme is connected if and only if the flip graph is ...
متن کاملCombinatorics of the Toric Hilbert Scheme Diane Maclagan and Rekha R. Thomas
The toric Hilbert scheme is a parameter space for all ideals with the same multi-graded Hilbert function as a given toric ideal. Unlike the classical Hilbert scheme, it is unknown whether toric Hilbert schemes are connected. We construct a graph on all the monomial ideals on the scheme, called the flip graph, and prove that the toric Hilbert scheme is connected if and only if the flip graph is ...
متن کاملNon-connected Toric Hilbert Schemes
We construct small (50 and 26 points, respectively) point sets in dimension 5 whose graphs of triangulations are not connected. These examples improve our construction in J. Amer. Math. Soc. 13:3 (2000), 611–637 not only in size, but also in that their toric Hilbert schemes are not connected either, a question left open in that article. Additionally, the point sets can easily be put into convex...
متن کاملIntersection theory on punctual Hilbert schemes and graded Hilbert schemes
The rational Chow ring A(S,Q) of the Hilbert scheme S parametrising the length n zero-dimensional subschemes of a toric surface S can be described with the help of equivariant techniques. In this paper, we explain the general method and we illustrate it through many examples. In the last section, we present results on the intersection theory of graded Hilbert schemes.
متن کاملMultigraded Hilbert Schemes
We introduce the multigraded Hilbert scheme, which parametrizes all homogeneous ideals with fixed Hilbert function in a polynomial ring that is graded by any abelian group. Our construction is widely applicable, it provides explicit equations, and it allows us to prove a range of new results, including Bayer’s conjecture on equations defining Grothendieck’s classical Hilbert scheme and the cons...
متن کامل